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Hydrogen bonding is largely responsible for the characteristic
features of life and plays an essential role in storage, replication,
and transcription of genetic information. In addition, H-bonding
has been widely used to enable the self-organization of properly
encoded, one or two-component self-complementary molecules into
a series of supramolecular architectures including linear structures,
ribbons, crinkled tapes, cyclic rosettes, or three-dimensional
arrays.1-3 In G-quartets the tetrameric unit is formed by four
guanine nucleotides and enhanced by various cations.4,5 Similarly,
folic acid and pterin, which resemble guanine, form tetramers
closely related to G-quartets.6-9 A wide variety of hexameric
rosettes have been obtained from two-component self-complemen-
tary H-bonding motifs (e.g., cyanuric acid and melamine).10-12

Nevertheless, the formation of the cyclic arrays in most of the
aforementioned examples depends on additional factors such as
metal ion (K+, Sr2+) binding, peripheral crowding, or covalent
preorganization. There are far fewer examples of using one-
component self-complementary motifs (i.e., Janus type molecules13-15

and Tectons16-18), in which proper hydrogen bonding itself is
sufficient to unambiguously govern the structural outcome of the
self-organization. Several studies have exploited the strong H-
bonding interaction of guanine and cytosine to create self-
complementary heterocycles that condense into trimeric and
hexameric rosettes architectures.19-31 In particular, Mascal and
Fenniri have pioneered the synthesis of G^C heterocycles that form
well-ordered hexameric rosettes representing prototypical nanotubes.
Inspired by their reports, we now report the synthesis, structural
analysis, and self-organization of a tetrameric Janus type DNA base
hybrid: G^C 1 (Figure 1). As with both their G^C bases and ours,
and unlike guanine/pterin systems, no metal cation induces as-
sociation since the lone pair of the oxygen is sandwiched between
two H-bonds leaving no site for metal chelation.

This self-complementary G^C heterocycle orients the H-bonding
faces of both guanine (ADD) and cytosine (DAA) on a 90° angle
dictated by the central pyrrol bond angles that specify a tetrameric
rosette containing 12 hydrogen bonds. This is the first case of a
self-complementary G^C heterocycle where hydrogen bonding
induces a tetrameric rosette. As G^C 1 was heretofore unknown,
its synthesis is briefly described in Scheme 1.

Commercially available 2 (2-amino-6-chloro-4-hydroxypyrim-
idine) was refluxed in aqueous n-butyl amine to give the diamino-
pyrimidine 3 in 90% yield. Condensation of 3 with 2-chloro-3-
oxo-propionitrile25,26 in aqueous solution provided 4: butylated
7-cyano-7-deazaguanine, which was protected in refluxing neat
isobutyric anhydride to obtain 5 in 90% yield. After testing several
different nitration conditions, treatment with ammonium nitrate and
trifluoroacetic anhydride in CH2Cl2 at room temperature afforded
6 in 93% yield.27 Catalytic hydrogenation of the nitro group using
Pd/C in methanol gave 7 in near quantitative yield. A single crystal
of deprotected 7 was grown in DMF and diffracted to verify the
regiochemical orientation of the -NH2 and -CN groups (Support-

ing Information, SI). Ultimately, treatment of 7 with benzoyl
isocyanate28,29 in the presence of pyridine/CH2Cl2 provided the
desired benzoyl urea 8 in excellent yields. Treatment of 8 with
NaH in refluxing toluene/ethanol cleanly removed the benzoyl and
isobutyryl groups and concomitantly induced annulation of the
cytosine face to complete the synthesis of G^C 1 in excellent yield.
A single crystal of 1 was obtained as a formate salt by diffusing
dioxane into a solution of formic acid (99%) (Figure 2).

To characterize properties of self-association, compound 1 was
examined by electrospray ionization mass spectrometry (ESI-MS),
variable temperature 1H NMR spectroscopy, and diffusion-ordered
spectroscopy (DOSY) (see SI). ESI-MS analysis of 1 showed two
major peaks for the monomer and dimer and a peak of lower
intensity for the quartet consistent with tetrameric association of

Figure 1. G^C 1 and the corresponding tetrameric rosette structure.

Scheme 1. Synthesis of G^C 1a

a (a) n-Butyl amine, water, reflux, 5 h, 90%; (b) 2-chloro-3-oxo-
propionitrile, sodium acetate, water, 80°C, 75%; (c) isobutyric anhydride,
reflux, 2 h, 90%; (d) ammonium nitrate, TFAA, CH2Cl2, rt, 8 h, 93%; (e)
H2 1 atm, 10%-Pd/C, MeOH, rt, 2 h, 97%; (f) benzoyl isocyanante, pyridine,
CH2Cl2, rt, 1 h, 93%; (g) sodium hydride, ethanol, toluene, reflux, 15 h,
89%.
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1. There was no detectable peak for the trimer or for any other
higher ordered aggregates.

Williams et al.30 used variable-temperature 1H NMR to show
that the two amino groups within a G-C base pair rotate at two
different rates. Only at very low temperature is rotation so retarded
that the exocyclic -NH2 protons of a G-C base pair reveal four
distinct 1H-resonances. We performed variable-temperature 1H
NMR from 25 to -70 °C on a solution of 1 in d6-DMSO/CDCl3

(1-3 mM) to verify H-bonding between the two faces of 1. At
higher temperatures, H2Na of the G-face rotates rapidly on the NMR
time scale and both protons appear as a single broad coalesced
resonance at 6.3 ppm. At -65 °C they resolve as two distinct
resonances at 5.75 and 7.3 ppm. In contrast, the amino protons of
the H2Nb of the C-face appear as a very broad, almost undetectable
resonance (6.75-7.65 ppm), which at -10 °C rapidly splits into
two well-resolved resonances at approximately 6.8 and 7.5 ppm.
At -65 °C the NH2 protons present as four distinct resonances.
The observation of new peaks at very low temperature is consistent
with a G-C pairing scheme and suggests formation of a quartet
rosette in the solution phase.

Self-association of 1 was initially investigated using 2D-NOESY
(see SI). Nevertheless to correlate the NOESY data with tetramer-
ization in solution, we opted to investigate self-association and size
determination of the quartet ensemble with pulse field-gradient
(PFG) NMR spectroscopy.31,32 Diffusion measurements of 1 were
carried out in a coaxial NMR tube under identical conditions of
concentration and temperature (to diminish the effect of convection)
in the presence of equimolar concentrations of carbazole, which
was chosen as a standard because of its similar geometry to 1. The
results are summarized in Table 1 (see SI for details). The results
of diffusion coefficient analysis are in very good agreement with
the results obtained from the ESI-MS and validate the presence of
a tetrameric rosette in d6-DMSO. Furthermore, this work highlights
the utility of DOSY-NMR for characterizing the stoichiometry of
noncovalently associated macromolecules.

In summary, the salient points of this work are as follows: The
synthesis of a heretofore unknown self-complementary G^C
heterocycle has been fully disclosed for the first time. The central
pyrrol ring arrays the self-complementary DDA-AAD faces at
precisely 90° which programs self-assembly into H-bonded tet-
rameric structures. These tetrameric structures are inferred from
gas-phase data as well as VT and DOSY NMR experiments that
provide conclusive evidence of this interaction in solution.

The self-organization of 1 and its potential for formation of
functional higher order systems such as organic nanotubes and
discotic liquid crystalline mesophases via π-stacking of quartets
will be reported in due time. A noteworthy application of 1, and
homopolymers thereof based on DNA and PNA, will be in the
sequence specific recognition of GC-rich sequences in RNA and
DNA. Such work is currently under investigation.
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Figure 2. ORTEP view of the X-ray crystal structure of 1 as the formate
salt grown in the presence of dioxane.
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